Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Revealing Shared and Distinct Genes Responding to JA and SA Signaling in Arabidopsis by Meta-Analysis.

Identifieur interne : 000061 ( Main/Exploration ); précédent : 000060; suivant : 000062

Revealing Shared and Distinct Genes Responding to JA and SA Signaling in Arabidopsis by Meta-Analysis.

Auteurs : Nailou Zhang [République populaire de Chine] ; Shuang Zhou [République populaire de Chine] ; Dongyan Yang [République populaire de Chine] ; Zhijin Fan [République populaire de Chine]

Source :

RBID : pubmed:32670328

Abstract

Plant resistance against biotrophic and necrotrophic pathogens is mediated by mutually synergistic and antagonistic effects of salicylic acid (SA) and jasmonic acid (JA) signals. However, the unique and shared genes responding to the defense mediated by JA/SA signals were largely unclear. To reveal discrete, synergistic and antagonistic JA/SA responsive genes in Arabidopsis thaliana, Meta-Analysis was employed with 257 publicly available Arabidopsis thaliana RNA-Seq gene expression profiles following treatment of mock, JA or SA analogs. JA/SA signalings were found to co-induce broad-spectrum disease-response genes, co-repress the genes related to photosynthesis, auxin, and gibberellin, and reallocate resources of growth toward defense. JA might attenuate SA induced immune response by inhibiting the expression of resistance genes and receptor-like proteins/kinases. Strikingly, co-expression network analysis revealed that JA/SA uniquely regulated genes showing highly coordinated co-expression only in their respective treatment. Using principal component analysis, and hierarchical cluster analysis, JA/SA analogs were segregated into separate entities based on the global differential expression matrix rather than the expression matrix. To accurately classify JA/SA analogs with as few genes as possible, 87 genes, including the SA receptor NPR4, and JA biosynthesis gene AOC1 and JA response biomarkers VSP1/2, were identified by three feature selection algorithms as JA/SA markers. The results were confirmed by independent datasets and provided valuable resources for further functional analyses in JA- or SA- mediated plant defense. These methods would provide cues to build a promising approach for probing the mode of action of potential elicitors.

DOI: 10.3389/fpls.2020.00908
PubMed: 32670328
PubMed Central: PMC7333171


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Revealing Shared and Distinct Genes Responding to JA and SA Signaling in Arabidopsis by Meta-Analysis.</title>
<author>
<name sortKey="Zhang, Nailou" sort="Zhang, Nailou" uniqKey="Zhang N" first="Nailou" last="Zhang">Nailou Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Shuang" sort="Zhou, Shuang" uniqKey="Zhou S" first="Shuang" last="Zhou">Shuang Zhou</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Dongyan" sort="Yang, Dongyan" uniqKey="Yang D" first="Dongyan" last="Yang">Dongyan Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fan, Zhijin" sort="Fan, Zhijin" uniqKey="Fan Z" first="Zhijin" last="Fan">Zhijin Fan</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32670328</idno>
<idno type="pmid">32670328</idno>
<idno type="doi">10.3389/fpls.2020.00908</idno>
<idno type="pmc">PMC7333171</idno>
<idno type="wicri:Area/Main/Corpus">000090</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000090</idno>
<idno type="wicri:Area/Main/Curation">000090</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000090</idno>
<idno type="wicri:Area/Main/Exploration">000090</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Revealing Shared and Distinct Genes Responding to JA and SA Signaling in Arabidopsis by Meta-Analysis.</title>
<author>
<name sortKey="Zhang, Nailou" sort="Zhang, Nailou" uniqKey="Zhang N" first="Nailou" last="Zhang">Nailou Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Shuang" sort="Zhou, Shuang" uniqKey="Zhou S" first="Shuang" last="Zhou">Shuang Zhou</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Dongyan" sort="Yang, Dongyan" uniqKey="Yang D" first="Dongyan" last="Yang">Dongyan Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fan, Zhijin" sort="Fan, Zhijin" uniqKey="Fan Z" first="Zhijin" last="Fan">Zhijin Fan</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin</wicri:regionArea>
<placeName>
<settlement type="city">Tianjin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant resistance against biotrophic and necrotrophic pathogens is mediated by mutually synergistic and antagonistic effects of salicylic acid (SA) and jasmonic acid (JA) signals. However, the unique and shared genes responding to the defense mediated by JA/SA signals were largely unclear. To reveal discrete, synergistic and antagonistic JA/SA responsive genes in
<i>Arabidopsis thaliana</i>
, Meta-Analysis was employed with 257 publicly available
<i>Arabidopsis thaliana</i>
RNA-Seq gene expression profiles following treatment of mock, JA or SA analogs. JA/SA signalings were found to co-induce broad-spectrum disease-response genes, co-repress the genes related to photosynthesis, auxin, and gibberellin, and reallocate resources of growth toward defense. JA might attenuate SA induced immune response by inhibiting the expression of resistance genes and receptor-like proteins/kinases. Strikingly, co-expression network analysis revealed that JA/SA uniquely regulated genes showing highly coordinated co-expression only in their respective treatment. Using principal component analysis, and hierarchical cluster analysis, JA/SA analogs were segregated into separate entities based on the global differential expression matrix rather than the expression matrix. To accurately classify JA/SA analogs with as few genes as possible, 87 genes, including the SA receptor
<i>NPR4</i>
, and JA biosynthesis gene
<i>AOC1</i>
and JA response biomarkers
<i>VSP1/2</i>
, were identified by three feature selection algorithms as JA/SA markers. The results were confirmed by independent datasets and provided valuable resources for further functional analyses in JA- or SA- mediated plant defense. These methods would provide cues to build a promising approach for probing the mode of action of potential elicitors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32670328</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Revealing Shared and Distinct Genes Responding to JA and SA Signaling in Arabidopsis by Meta-Analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>908</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.00908</ELocationID>
<Abstract>
<AbstractText>Plant resistance against biotrophic and necrotrophic pathogens is mediated by mutually synergistic and antagonistic effects of salicylic acid (SA) and jasmonic acid (JA) signals. However, the unique and shared genes responding to the defense mediated by JA/SA signals were largely unclear. To reveal discrete, synergistic and antagonistic JA/SA responsive genes in
<i>Arabidopsis thaliana</i>
, Meta-Analysis was employed with 257 publicly available
<i>Arabidopsis thaliana</i>
RNA-Seq gene expression profiles following treatment of mock, JA or SA analogs. JA/SA signalings were found to co-induce broad-spectrum disease-response genes, co-repress the genes related to photosynthesis, auxin, and gibberellin, and reallocate resources of growth toward defense. JA might attenuate SA induced immune response by inhibiting the expression of resistance genes and receptor-like proteins/kinases. Strikingly, co-expression network analysis revealed that JA/SA uniquely regulated genes showing highly coordinated co-expression only in their respective treatment. Using principal component analysis, and hierarchical cluster analysis, JA/SA analogs were segregated into separate entities based on the global differential expression matrix rather than the expression matrix. To accurately classify JA/SA analogs with as few genes as possible, 87 genes, including the SA receptor
<i>NPR4</i>
, and JA biosynthesis gene
<i>AOC1</i>
and JA response biomarkers
<i>VSP1/2</i>
, were identified by three feature selection algorithms as JA/SA markers. The results were confirmed by independent datasets and provided valuable resources for further functional analyses in JA- or SA- mediated plant defense. These methods would provide cues to build a promising approach for probing the mode of action of potential elicitors.</AbstractText>
<CopyrightInformation>Copyright © 2020 Zhang, Zhou, Yang and Fan.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Nailou</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Shuang</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Dongyan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Zhijin</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Front Plant Sci. 2020 Sep 17;11:596349</RefSource>
<PMID Version="1">33042198</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">co-expression network</Keyword>
<Keyword MajorTopicYN="N">jasmonic acid</Keyword>
<Keyword MajorTopicYN="N">meta-analysis</Keyword>
<Keyword MajorTopicYN="N">molecular markers</Keyword>
<Keyword MajorTopicYN="N">plant immunity</Keyword>
<Keyword MajorTopicYN="N">salicylic acid</Keyword>
<Keyword MajorTopicYN="N">systems biology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32670328</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.00908</ArticleId>
<ArticleId IdType="pmc">PMC7333171</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2018 Jun;30(6):1199-1219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29794063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Nov;232(6):1423-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20839007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8711-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Mar;23(5):1188-1203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24313595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Jan 11;11:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Aug;7(8):1267-1287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24777989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11756663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jun;147(2):503-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Apr 10;7:197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16606446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Feb;73(3):469-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23062058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Apr 1;30(7):923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Sep 1;26(17):2136-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20591905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jul;5(7):e1000545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19578402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 1996 Oct 31;3(5):277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9039496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2009;7:e0123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Dec;38(6):1071-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9869413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2636-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14576290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 26;5:804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25674095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Nov;139(3):1268-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16258017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2012 Jun 14;11(6):587-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22704619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Mar 31;7:422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27066056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr 15;6(4):e1000861</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20419157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Jan;51(1):21-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12602888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31066453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Apr 20;43(7):e47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25605792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 9;448(7154):661-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 May;17(5):260-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22498450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Nov 28;376(4):723-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18812165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jul 18;9(7):e102245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25036661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Aug;38:164-172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28624670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2004 Feb;14(1):8-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15040885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Apr 1;30(7):962-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24351708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 May 17;68(11):2991-3005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28586434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jan 03;15:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24383931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):949-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16183832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Nov 06;9:1613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30459795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Jun;86(6):472-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27015116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Dec 1;12(23):3703-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9851977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2019 Aug;50:29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30901692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2016 Jan 15;5(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27135227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jan;164(1):481-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24235132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Nov;29(11):2727-2752</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29042403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Sep;24(9):3530-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23023172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2015 Dec 1;142(23):4129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26493403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2405-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jul 14;6:29554</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27412821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Mar 1;68(6):1371-1385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28069779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):839-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Aug;162(4):1815-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23757404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Sep;145(1):147-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17631527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Jun 11;10(1):2543</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31186426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2015 May 15;460(4):1015-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25842204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Apr;29(4):666-680</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28320784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Feb;233(2):299-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21046144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Jan;81(2):304-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25407262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1597-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Feb;25(2):744-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23435661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(2):304-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2019 May 1;35(9):1597-1599</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30304367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2011;9:e0156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(4):439-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(6):912-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 May;86(3):249-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26991768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:473-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23725467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25751142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1385-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24491116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2012;28:489-521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22559264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Nov;68(3):507-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21756272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 May 15;27(10):1442-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21450711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jan 2;323(5910):95-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11655-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):249-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Aug 30;7:12570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27573094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 May 12;165(3):1302-1314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24820026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Feb;73(3):483-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23067202</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Tianjin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Nailou" sort="Zhang, Nailou" uniqKey="Zhang N" first="Nailou" last="Zhang">Nailou Zhang</name>
</noRegion>
<name sortKey="Fan, Zhijin" sort="Fan, Zhijin" uniqKey="Fan Z" first="Zhijin" last="Fan">Zhijin Fan</name>
<name sortKey="Yang, Dongyan" sort="Yang, Dongyan" uniqKey="Yang D" first="Dongyan" last="Yang">Dongyan Yang</name>
<name sortKey="Zhou, Shuang" sort="Zhou, Shuang" uniqKey="Zhou S" first="Shuang" last="Zhou">Shuang Zhou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000061 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000061 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32670328
   |texte=   Revealing Shared and Distinct Genes Responding to JA and SA Signaling in Arabidopsis by Meta-Analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32670328" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020